The moon from earth

The Moon is the only natural satellite of the Earth, and the fifth largest satellite in the Solar System. It is the largest natural satellite of a planet in the Solar System relative to the size of its primary, having 27% the diameter and 60% the density of Earth, resulting in 181 its mass. The Moon is the second densest satellite after Io, a satellite of Jupiter.


The Moon is thought to have formed nearly 4.5 billion years ago, not long after Earth's formation. Earlier in Earth's history, the Moon was closer to Earth, and would have had an apparent visual size greater than that of the sun.

Theories for how it formed:Edit

Several mechanisms have been proposed for the Moon's formation. These included the fission of the Moon from the Earth's crust through centrifugal force, the gravitational capture of a pre-formed Moon, and the co-formation of the Earth and the Moon together in the primordial accretion disk.

Physical characteristicsEdit

Internal structureEdit

Chemical composition of the lunar surface regolith (derived from crustal rocks)[27]
Compound Formula Composition (wt %)
Maria Highlands
silica SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
lime CaO 11.8% 15.9%
iron(II) oxide FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioxide TiO2 3.9% 0.6%
sodium oxide Na2O 0.6% 0.6%
Total 99.9% 100.0%

The Moon is a differentiated body: it has a geochemically distinct crust, mantle, and core. The Moon has a solid iron-rich inner core with a radius of 240 kilometers and a fluid outer core primarily made of liquid iron with a radius of roughly 300 kilometers. Around the core is a partially molten boundary layer with a radius of about 500 kilometers.

This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon's formation 4.5 billion years ago. Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallised, lower-density plagioclase minerals could form and float into a crust on top. The final liquids to crystallise would have been initially sandwiched between the crust and mantle, with a high abundance of incompatible and heat-producing elements. Consistent with this, geochemical mapping from orbit shows the crust is mostly anorthosite, and moon rock samples of the flood lavas erupted on the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron rich than that of Earth. Geophysical techniques suggest that the crust is on average ~50 km thick.

The Moon is the second densest satellite in the Solar System after Io.However, the inner core of the Moon is small, with a radius of about 350 km or less; this is only ~20% the size of the Moon, in contrast to the ~50% of most other terrestrial bodies. Its composition is not well constrained, but it is probably metallic iron alloyed with a small amount of sulphur and nickel; analyses of the Moon's time-variable rotation indicate that it is at least partly molten.

Surface geologyEdit

Volcanic featuresEdit

The dark and relatively featureless lunar plains which can clearly be seen with the naked eye are called maria (Latin for "seas"; singular mare), since they were believed by ancient astronomers to be filled with water.They are now known to be vast solidified pools of ancient basaltic lava. While similar to terrestrial basalts, the mare basalts have much higher abundances of iron and are completely lacking in minerals altered by water.

Impact cratersEdit

The other major geologic process that has affected the Moon's surface is impact cratering,with craters formed when asteroids and comets collide with the lunar surface. There are estimated to be roughly 300,000 craters wider than 1 km on the Moon's near side alone. Some of these are named after scientists, artists and explorers. The lunar geologic timescale is based on the most prominent impact events, including Nectaris, Imbrium, and Orientale, structures characterized by multiple rings of uplifted material, typically hundreds to thousands of kilometres in diameter and associated with a broad apron of ejecta deposits that form a regional stratigraphic horizon. The lack of an atmosphere, weather and recent geological processes mean that many of these craters are well-preserved.

While only a few multi-ring basins have been definitively dated, they are useful for assigning relative ages. Since impact craters accumulate at a nearly constant rate, counting the number of craters per unit area can be used to estimate the age of the surface. The radiometric ages of impact-melted rocks collected during the Apollo missions cluster between 3.8 and 4.1 billion years old: this has been used to propose a Late Heavy Bombardment of impacts.

Blanketed on top of the Moon's crust is a highly comminuted (broken into ever smaller particles) and impact gardened surface layer called regolith, formed by impact processes. The finer regolith, the lunar soil of silicon dioxide glass, has a texture like snow and smell like spent gunpowder.[57] The regolith of older surfaces is generally thicker than for younger surfaces: it varies in thickness from 10–20 m in the highlands and 3–5 m in the maria. Beneath the finely comminuted regolith layer is the megaregolith, a layer of highly fractured bedrock many kilometres thick.

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.